The Steve Jackson Laboratory Website
Transformative discoveries in genome and cellular integrity

Publications

Microtubules deform the nuclear membrane and disrupt nucleocytoplasmic transport in tau-mediated frontotemporal dementia

Paonessa F, Evans LD, Solanki R, Larrieu D, Wray S, Hardy J, Jackson SP, Livesey FJ. (2019)

Cell Reports 26, 582-593

Highlights

•Tau mutations cause microtubule-mediated deformation of the nucleus in dementia

•Nuclear deformation results in defective nucleocytoplasmic transport

•Neuronal nuclei are deformed in the post-mortem frontotemporal dementia brain

•Disrupted nucleocytoplasmic transport is shared in multiple dementias

Read More
Kate Dry
ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks

Balmus G, Pilger D, Coates J, Demir M, Sczaniecka-Clift M, Barros AC, Woods M, Fu B, Yang F, Chen E, Ostermaier M, Stankovic T, Ponstingl H, Herzog M, Yusa K, Munoz Martinez F, Durant ST, Galanty Y, Beli P, Adams DJ, Bradley A, Metzakopian E, Forment JV and Jackson SP. (2019)

Nature Communications 10, Article number: 87

Mutations in the ATM tumor suppressor gene confer hypersensitivity to DNA-damaging chemotherapeutic agents. To explore genetic resistance mechanisms, we performed genome-wide CRISPR-Cas9 screens in cells treated with the DNA topoisomerase I inhibitor topotecan. Thus, we here establish that inactivating terminal components of the non-homologous end-joining (NHEJ) machinery or of the BRCA1-A complex specifically confer topotecan resistance to ATM-deficient cells.

Access the recommendation on F1000Prime

Read More
Kate Dry
The deubiquitylating enzyme UCHL3 regulates Ku80 retention at sites of DNA damage.

Nishi R, Wijnhoven PWG, Kimura Y, Matsui M, Konietzny R, Wu Q, Nakamura K, Blundell TL, Kessler BM.

Scientific Reports 2018 8(1):17891.

Non-homologous end-joining (NHEJ), which can promote genomic instability when dysfunctional, is a major DNA double-strand break (DSB) repair pathway. Although ubiquitylation of the core NHEJ factor, Ku (Ku70-Ku80), which senses broken DNA ends, is important for its removal from sites of damage upon completion of NHEJ, the mechanism regulating Ku ubiquitylation remains elusive. We provide evidence showing that the ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) interacts with and directly deubiquitylates one of the Ku heterodimer subunits, Ku80.

Read More
Kate Dry
Predicting the mutations generated by repair of Cas9-induced double-strand breaks.

Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, De Angeli P, Páleníková P, Khodak A, Kiselev V, Kosicki M, Bassett AR, Harding H, Galanty Y, Muñoz-Martínez F, Metzakopian E, Jackson SP, Parts L. (2018)

Nature Biotechnology Nov 27 [Epub ahead of print]

The DNA mutation produced by cellular repair of a CRISPR-Cas9-generated double-strand break determines its phenotypic effect. It is known that the mutational outcomes are not random, but depend on DNA sequence at the targeted location. Here we systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs.

Read More
Kate Dry
Phosphorylation of Histone H4T80 Triggers DNA Damage Checkpoint Recovery.

Millan-Zambrano G, Santos-Rosa H, Puddu F, Robson SC, Jackson SP, Kouzarides T. (2018)

Molecular Cell 72(4):625-635.

In response to genotoxic stress, cells activate a signaling cascade known as the DNA damage checkpoint (DDC) that leads to a temporary cell cycle arrest and activation of DNA repair mechanisms. Because persistent DDC activation compromises cell viability, this process must be tightly regulated. However, despite its importance, the mechanisms regulating DDC recovery are not completely understood. Here, we identify a DNA-damage-regulated histone modification in Saccharomyces cerevisiae, phosphorylation of H4 threonine 80 (H4T80ph), and show that it triggers checkpoint inactivation.

Read More
Kate Dry
Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells

Dev H, Chiang TW, Lescale C, de Krijger I, Martin AG, Pilger D, Coates J, Sczaniecka-Clift M, Wei W, Ostermaier M, Herzog M, Lam J, Shea A, Demir M, Qian Wu Q, Yang F, Fu B, Lai Z, Balmus G, Belotserkovskaya R, Serra V, O’Connor MJ, runa A, Beli P, Pellegrini L, Caldas C, Deriano L, Jacobs JJL, Galanty Y and Jackson SP. (2018)

Nature Cell Biology 20, 954-965

BRCA1 deficiencies cause breast, ovarian, prostate and other cancers, and render tumours hypersensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. To understand the resistance mechanisms, we conducted whole-genome CRISPR–Cas9 synthetic-viability/resistance screens in BRCA1-deficient breast cancer cells treated with PARP inhibitors. We identified two previously uncharacterized proteins, C20orf196 and FAM35A, whose inactivation confers strong PARP-inhibitor resistance.

Read More
Kate Dry
Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway

Larrieu D, Viré E, Robson S, Breusegem SY, Kouzarides T, Jackson SP. (2018)

Science Signaling 11, eaar5401

Cells from patients with Hutchinson-Gilford progeria syndrome (HGPS) have defects in nuclear architecture and function that lead to premature cellular senescence, aging, and early death. Larrieu et al. (see the Focus by Wilson) found that inhibition or depletion of the acetyltransferase NAT10 rescued many of the phenotypes of HGPS patient cells by destabilizing microtubules, which reversed the abnormal cytoplasmic accumulation of the nuclear importer Transportin-1 (TNPO1). This restored proper assembly of the nuclear pore complex, import of nuclear proteins, chromatin organization, and gene expression patterns.

Read More
Kate Dry
Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48

Velimezi G, Robinson-Garcia L, Muñoz-Martínez F, Wiegant WW, Ferreira da Silva J, Owusu M, Moder M, Wiedner M, Rosenthal SB, Fisch KM, Moffat J, Menche J, Van Attikum H, Jackson SP and Loizou JI. (2018)

Nature Communications 9, Article number 2280

Defects in DNA repair can cause various genetic diseases with severe pathological phenotypes. Fanconi anemia (FA) is a rare disease characterized by bone marrow failure, developmental abnormalities, and increased cancer risk that is caused by defective repair of DNA interstrand crosslinks (ICLs). Here, we identify the deubiquitylating enzyme USP48 as synthetic viable for FA-gene deficiencies by performing genome-wide loss-of-function screens across a panel of human haploid isogenic FA-defective cells (FANCA, FANCC, FANCG, FANCI, FANCD2).

Read More
Kate Dry